News & Events

Monday, August 21, 2017

Solar Eclipse Viewing

Safely see the Great American Solar Eclipse through an array of telescopes

In our region the eclipse starts around 1:20 pm and ends around 4:00 pm, with the eclipse maximum occurring around 2:45pm.  Note that it will only be a partial eclipse here, so there is no qualitatively different "minutes of totality" to see (or miss) that people in other parts of the country will be able to witness, just a gradual darkening and lightening.
Time: 1:15 pm – 4:00 pm
Location: Campus Walk (Above Kline)
E-mail to Friend

Thursday, September 14, 2017

Ancient European Dog Genomes Reveal Continuity Since the Early Neolithic

Krishna VeeramahStony Brook University

Time: 12:00 pm
Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
E-mail to Friend

Thursday, September 14, 2017

Climate Change and Behavioral Economics: Implications for Policy

Howard KunreutherJames D.  Dinan Professor of Decision Sciences and PolicyCo-Director of Wharton Risk Management and Decision Processes CenterWharton School  University of Pennsylvania  

We face challenges in dealing with potentially catastrophic events associated with climate change. Most individuals do not think about investing in energy efficient measures to reduce global warming or undertaking protective actions to reduce damage to their homes from future floods or hurricanes until after a disaster occurs. I will use concepts from behavioral economics and psychology to highlight why we ignore these risks and recommend public-private sector partnerships that provide economic incentives for taking steps now rather than waiting until it is too late.
Time: 4:40 pm
Location: Olin, Room 102
E-mail to Friend

Thursday, September 28, 2017

Degradation-resistant Proteins:
Biological, Disease, and Biotechnology Implications

Wilfredo Colón, Ph.D.Rensselaer Polytechnic Institute

Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
E-mail to Friend

Thursday, September 28, 2017

Village of Red Hook Municipal Sewer Project

Brent KovalchikArchitect and Deputy Mayor of Red Hook, NY 

The Village of Red Hook’s Municipal Sewer Project has been developing for over seventy years. Countless planning documents, initiatives, two failed referendums and the path to final completion will be explored.  The project addresses the Village’s economic development future and protection of drinking water supplies for residents and institutions that rely on the Saw Kill Watershed’s aquifer, tributaries and streams for their own needs.
Through the example of a municipal infrastructure project, we will discuss the work involved with gathering and documenting the research, finding the necessary funding, advocating for its necessity, and navigating the bureaucratic and regulatory paperwork required to realize this most important project.
Time: 4:40 pm
Location: Olin, Room 102
E-mail to Friend

Thursday, October 5, 2017

Effects of Viruses on Plant Fitness:
A Plant Ecologist's Foray into Plant Virus Ecology

Helen AlexanderUniversity of Kansas

Time: 12:00 pm
Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
E-mail to Friend

Thursday, October 12, 2017

The Evolution of Animal Flight From a Biomechanics Perspective

David E. AlexanderUniversity of Kansas

Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
E-mail to Friend

Monday, October 30, 2017

A Reading by Diane Ackerman

The celebrated author reads from The Zookeeper’s Wife

On Monday, October 30, at 2:30 p.m. in Weis Cinema, Bertelsmann Campus Center, Diane Ackerman reads from The Zookeeper’s Wife. Sponsored by the Innovative Contemporary Fiction Reading Series, introduced by Bradford Morrow and followed by a Q&A, the reading is free and open to the public; no tickets or reservations are required.

The Zookeeper’s Wife, a little known true story of WWII, enjoyed months as the New York Times #1 nonfiction bestseller, was the basis for the 2017 feature film of the same title, and received the Orion Book Award, which honored it as “a groundbreaking work of nonfiction, in which the human relationship to nature is explored in an absolutely original way through looking at the Holocaust. A few years ago, ‘nature’ writers were asking themselves, How can a book be at the same time a work of art, an act of conscientious objection to the destruction of the world, and an affirmation of hope and human decency? The Zookeeper’s Wife answers this question.”

Diane Ackerman’s other works of nonfiction include An Alchemy of Mind, a poetics of the brain based on the latest neuroscience; Deep Play, which considers play, creativity, and our need for transcendence; A Slender Thread, about her work as a crisis line counselor; The Rarest of the Rare and The Moon by Whale Light, in which she explores the plight and fascination of endangered animals; On Extended Wings, her memoir of flying; and her bestseller, A Natural History of the Senses. Her most recent book, The Human Age: The World Shaped by Us, a celebration of the natural world and human ingenuity, and an exploration of human-driven planetary change, received the P.E.N. Henry David Thoreau Award for Nature Writing.

Several of Ackerman's books have been Pulitzer Prize and National Book Circle Critics Award finalists. She also has the rare distinction of having a molecule named after her—dianeackerone— a pheromone in crocodilians. Her essays about nature and human nature have been appearing for decades in the New York Times, New Yorker, American Scholar, Smithsonian, National Geographic, and elsewhere.

Any supporter who donates $500 or more to Bard’s literary journal Conjunctions receives a BackPage Pass providing VIP access to any Fall 2017 or future event in the Innovative Contemporary Fiction Reading Series. Have lunch with a visiting author, attend a seminar on their work, and receive premium seating at their reading. Or you can give your BackPage Pass to a lover of literature on your gift list! To find out more, click here or contact Micaela Morrissette at or (845) 758-7054.
Time: 2:30 pm
Location: Campus Center, Weis Cinema
E-mail to Friend

Thursday, November 2, 2017

Poisons, Predators, and Parasites:
Integrating Ecological and Evolutionary Complexity into Toxicology

Jessica HuaBinghamton University SUNY 

Time: 12:00 pm
Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
E-mail to Friend

Tuesday, November 14, 2017

AMC 8 Contest

Sponsored by the Bard Math Circle

The AMC 8 is a 25-question, 40-minute, multiple choice examination in middle school mathematics designed to promote the development and enhancement of problem-solving skills.
The contest is paired with an engaging math talk at the middle school level, presented by a Bard mathematician.

The Bard Math Circle hosts this annual event to promote a culture of mathematical problem solving and math enrichment in the mid-Hudson Valley.
Time: 4:00 pm – 6:00 pm
Location: Reem-Kayden Center
Website: Event Website
E-mail to Friend

Thursday, November 16, 2017

Integrating Livestock and Wildlife in an African Savanna

Felicia Keesing, Biology Program

Time: 12:00 pm
Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
E-mail to Friend

Thursday, November 30, 2017

How to Plan a Meaningful Summer

Felicia KeesingBiology Program

Time: 12:00 pm
Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
E-mail to Friend

Thursday, November 30, 2017

Harlem and the Roots of Gentrification, 1965-2003

Brian Goldstein, Swarthmore College

In the last four decades of the twentieth century, Harlem, New York—America’s most famous neighborhood—transformed from the archetypal symbol of midcentury “urban crisis” to the most celebrated example of “urban renaissance” in the United States. Once a favored subject for sociologists studying profound poverty and physical decline, by the new millennium Harlem found itself increasingly the site of refurbished brownstones, shiny glass and steel shopping centers, and a growing middle-class population. Drawing from Brian Goldstein’s new book, The Roots of Urban Renaissance: Gentrification and the Struggle Over Harlem (Harvard University Press, 2017), this lecture will trace this arc by focusing on competing visions for Harlem's central block. In doing so, it will reveal the complicated history of social and physical transformation that has changed this and many American urban centers in the last several decades. Gentrification is often described as a process controlled by outsiders, with clear winners and losers, victors and victims. In contrast, this talk will explore the role that Harlemites themselves played in bringing about Harlem’s urban renaissance, an outcome that had both positive and negative effects for their neighborhood. 
Time: 4:40 pm
Location: Olin, Room 102
E-mail to Friend

Past Events

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008

    • 2017

      How Does Biological Control of Ticks Affect Non-target Organisms?

      July 20
      Reem-Kayden Center Laszlo Z. Bito '60 Auditorium

      Efficient Learning:
      What are the Limits of Human Memory?

      July 13
      Reem-Kayden Center Laszlo Z. Bito '60 Auditorium

      Our memory systems leverage the statistical structure of the world around us (context) to organize and store incoming information and retrieve previously stored information.  This enables us to recognize the situations we are in and to adapt our behaviors accordingly.  For example, your might choose to behave differently on a road trip with close friends versus commuting into work with your boss, even though many aspects of your perceptual experience are preserved across those two scenarios.  You might also remember different aspects of conversations from those trips when asked about them later.

      In my talk, I will explore the extent to which (and the circumstances under which) these sorts of processes may be manipulated to influence memory.  I’ll begin by exploring these processes using a simple word list learning paradigm.  I’ll show how we can influence memory performance (specifically, how many words people remember and the order people remember the words in).  Then I’ll talk about how these same ideas can be applied to “naturalistic” memories, such as memories for scenes in a movie or concepts learned in the classroom.

      From Black Holes to Gravitational Waves and Quantum Measurement

      July 6
      Reem-Kayden Center Laszlo Z. Bito '60 Auditorium

      With three detections and counting, the Advanced LIGO gravitational-wave observatories have opened a new window into the Universe. For now, all the detected gravitational-waves originated from collisions of two black holes. The effect that these gravitational-waves have as they pass through space is to stretch and compress space-time, much like sound waves stretch and compress the air. To understand the challenge of detecting this effect here on Earth, imagine (if you can) that a reasonably strong gravitational wave changes the length of one kilometer by one thousandth of a proton's diameter. At this level of sensitivity, quantum mechanics and the Heisenberg uncertainty principle start playing a significant role and if we want to listen further into the Universe, we need to manipulate the quantum nature of light to our advantage. In this talk I will give an overview of gravitational waves, how LIGO detects them, and why quantum mechanics matters when measuring distances with such precision.

      Journey to the Center of the Earth

      June 15
      Reem-Kayden Center Laszlo Z. Bito '60 Auditorium

      Earth's iron alloy inner core was not discovered until 1936-six years after the discovery of Pluto. For many years after that little was known about this most remote part of our planet, but in the last thirty years seismologists have been revealing it has some unusual properties. The cause of these seismic inferences remains uncertain, but they provide clues about the mineral physics and dynamics of the core. This talk will review the seismic observations of the inner core, and discuss their implications for its evolution.

      Looking for Extra Dimensions in the Cosmic Microwave Background

      May 19
      Hegeman 107

      We can only perceive four dimensions, but several standard model extensions suggest the existence of more. If that’s true, why can't we see them? One possible explanation is that these extra dimensions are compactified, meaning they have a finite length compared to the infinite standard four. Cosmology offers a very interesting possibility of finding evidence for the existence of these extra dimensions in the Cosmic Microwave Background (CMB). The CMB is an echo from the Big Bang era, and can give us important insight to the past of our universe and whether it could have included compactified dimensions.

      Senior Project Poster Session

      May 18
      Reem-Kayden Center

      Join Science, Mathematics & Computer graduating seniors in presenting their senior projects.

      Astronomy Night:
      Jupiter over Montgomery Place

      May 16
      Montgomery Place, Mansion

      Join us at the Montgomery Place visitor center for a short talk from Prof. Eleni Kontou on the the latest science from NASA’s Juno probe of Jupiter, followed
      by telescope viewing of Jupiter and its moons, a guided tour of the night sky, and a round of ask-a-physicist-anything.

      Busses to the Event leave from Kline South Stop at
      8:15 & 8:30 pm

      Clear Weather Permitting.

      Galactic Exploration with Invisible Light

      May 12
      Hegeman 107

      Radio astronomy has greatly enhanced the range of observable astronomical phenomena.  Although a wide range of wavelengths are used in radio astronomy, one of the most important is 21 cm, which corresponds to the hyperfine transition in atomic hydrogen.   Although the 21 cm signal from a small collection of hydrogen atoms is exceedingly weak, and the density of hydrogen in the Milky Way is very low, the Galaxy is a big place and contains enough hydrogen to produce a signal that can be detected with a modest terrestrial apparatus.    In this talk, I will present results obtained at 21 cm with a recently refurbished cold-war-era 60-foot dish antenna.   Data from the dish will be used to measure the Sun's velocity with respect to the average velocity of nearby stars and to infer the existence of dark matter.    Time permitting, pulsar signals will be presented and schematic plans for a kit capable of detecting indirect evidence for dark matter for costing less than $1000 will be presented.

      Next-generation Atomic Clocks:
      Harnessing Quantum Matter to Study Gravity and Search for Dark Matter

      April 28
      Hegeman 107

      The accuracy of atomic clocks has improved a thousandfold over the last 15 years. The latest generation of atomic clocks, called "optical lattice clocks", can detect changes in general relativity's gravitational redshift over a few centimers. These clocks use extremely stable lasers to count the "ticks" of an optical-frequency transition in atoms cooled to the nanokelvin regime, reaching 18 digits of accuracy in a few hours. In this talk, I will discuss how we achieve this accuracy through exquisite control of the quantum mechanical state of these ultracold atoms, and how we are using these clocks to search for dark matter and test relativity.

      ​The Higgs Boson:  What, How, and Why We Care​

      April 7
      Hegeman 107

      In the summer of 2012, two teams of scientists working on the Large Hadron Collider in Switzerland announced that they had discovered the long-awaited Higgs Boson.  What is this particle?  Why do physicists think is it so important?  How was it predicted?  How was it discovered?  What are the implications to our understanding of matter, energy, and the universe?  These and other questions will be addressed as we investigate the fundamental particles and forces that underlie all physical phenomena, culminating in the Higgs discovery and consideration of what might be beyond.

      Visualizing Quantum Gravity:
      A pictorial introduction to causal dynamical triangulations

      March 10
      Hegeman 107

      Quantum gravity is the much sought-after synthesis of quantum mechanics and general relativity, the two pillars of contemporary physics. I will deliver an accessible introduction to the promising approach to quantum gravity called causal dynamical triangulations. Founding my presentation on the quantum mechanics of a particle, I will build an intuitive conception of the quantum mechanics of spacetime. I will survey the key results deriving from causal dynamical triangulations and broach the key question facing causal dynamical triangulations.


      Big Planets from Small Telescopes:
      What We’re Learning About Exoplanets and How Small Observatories Are Making It Possible

      March 3
      Hegeman 107

      Since the discovery of the first extrasolar planet a little more than 20 years ago, the list of known planets orbiting other stars has grown to more than 3,000—but we are still in the early stages of understanding the diversity of other planetary systems.  A key part of this understanding has come from studies of planets that eclipse (or “transit”) their host stars as seen from Earth.   I will explain how studies of these planets allow us to determine their radii, masses, mean densities, atmospheric composition, and the angle at which they orbit relative to the parent star’s equator, all without being able to image the planets directly.  Small telescopes (with primary mirror diameters of 0.3–1 meter) play an important role in the larger “ecosystem” of telescopes that discover and characterize these planets, and such telescopes have been instrumental in the recent discoveries of planets around very bright stars that are much hotter than the Sun, and in the just-announced discovery of seven Earth-radius planets around the ultra-cool dwarf star Trappist-1.

      Hunting the Brightest Galaxies in the Universe

      February 24
      Hegeman 107

      I’ll give an overview of observing at the 50-m Large Millimeter Telescope and will focus on the latest results on distant, dusty, massive starburst galaxies in the early universe.  Studying distant galaxies lets us peer billions of years back in time, well over halfway back to the Big Bang, to learn how galaxies form and evolve.  New infra-red and millimeter-wave images and spectra from the Planck and Herschel satellites and from the LMT have helped identify the most luminous galaxies yet known, thousands of times brighter than our own Milky Way, and churning gas into new stars at a furious rate.  Many are also strongly gravitationally lensed, their images warped and amplified by intervening massive galaxies, which lets us see more detail on fainter galaxies than usual.  Hubble Space Telescope’s sharp vision further enhances our view and can finally reveal what triggers such spectacular starburst activity. 

      Are You Interested in Pursuing a Career as a Health Professional?

      February 16
      Campus Center Lobby

      Join Zammy Diaz, IHN Communications Center, to learn why the one-year MS Program in Nutrition Science may be a great gap or glide year for you.

      Flying Boys, Defibrillated Chickens, and Death By Lightning: 
      A Brief History of Electricity and Magnetism

      February 3
      Hegeman 102

      The development of almost all modern technology relies on a firm understanding of the concepts of electricity and magnetism, and these concepts are at the heart of fundamental explanations of most physical phenomena. The historical evolution of these concepts traces back thousands of years and took a number of surprising, unorthodox, and occasionally tragic turns before the rules governing electricity and magnetism were codified. In this talk, intended for a general audience, I'll review some of the key experiments and insights of past centuries that led to our present theories.

      Physics Program Social and Lunch to Follow